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Computer-Aided Analysis of Free-Running
Microwave Oscillators
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Abstract —Traditionally, the design of microwave oscillators
has been based on small-signal analysis techniques, which gen-

erally produced good results. However, large-signal simulations
are often necessary to provide a more accurate characterization
of oscillator performance. In this paper, an algorithm for free-

runing oscillator analysis is presented. Kurokawa’s oscillation

condition is coupled with the modified nodal admittance form of

the circuit equations to avoid degenerate solutions. The algo-

rithm has been implemented using both harmonic balance and

frequency-domain spectral balance techniques. The oscillator

analysis was applied to the simulation of a monolithically inte-

grated varactor-tuned MESFET oscillator. Good agreement be-

tween simulated power and oscillation frequency results and the
measured data was obtained.

I. INTRODUCTION

sMALL-SIGNAL analysis techniques form the basis of

a systematic oscillator design procedure [11–[31. How-

ever, they do not yield power or harmonic content infor-

mation. Large-signal simulation is necessary to provide

this more accurate characterization of oscillator perfor-

mance. This is particularly important in achieving a first-

pass successful design of monolithic microwave integrated

circuit (MMIC) VCO’S. A successful design and analysis

strategy is to determine a circuit topology early in the

design phase using small-signal techniques. Then a large-

signal analysis focuses on reliable performance predic-

tions and subsequent optimization of the oscillator design.

Rizzoli et al. [4], [5] proposed a method (implemented

in [6]) based on the harmonic balance technique for

oscillator synthesis. The oscillation frequency is fixed while

one circuit parameter is optimized to ensure that the

harmonic balance equations are satisfied at that fre-

quency. This method is numerically efficient and yields

well-defined and accurate results. However, it is not di-

rectly amenable to free-running oscillator analysis as the

frequency is fixed and a degree of freedom, such as a
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tuning element or the load impedance, is varied until

harmonic balance is achieved. By repeating this prc)cess

for a number of frequencies, a curve of frequency versus

the degree of freedom is obtained. In this manner oscilla-

tors can be analyzed without involving autonomous circuit

simulation.

The obvious approach to free-running oscillator analy-

sis is to use the harmonic balance equations developed for

the circuit and to include the oscillation frequency as an

additional optimization variable. This method has been

used by a number of workers [7], [81. Generally, one of the

variables thaf would be used as an optimization variable

in examining a nonautonomous circuit 1 is eliminated, for

example, by setting the phase of a voltage or current to

zero. Usually, with this approach, the simulated results

tend to converge to a degenerate solution [9] (e.g,. all

currents equal to zero is also a solution of Kirchhoff’s

current law, which is the basis of the harmonic balance

equations), or else the initial setting of the oscillating

frequency must be very close to the final result [8].

The degenerate solution can be avoided by incorporat-

ing additional criteria in the system objective function.

This was done by Sterzer [10], in the early 1960’s, in

calculating the output power of a GaAs tunnel dliode

oscillator by incorporating the Kurokawa oscillation con-

dition [11]. Also, in the early 1980’s Solbach [12], working

with a Gunn diode oscillator, and Bates [13], examining

an IMPATT diode oscillator, predicted the frequency and

output power by solving multifrequency forms of

Kurokawa’s oscillation condition [14] using frequcncy-

domain power-series analysis techniques. However, the

work on single-diode oscillator circuits cannot be directly

extended to general nonlinear oscillator circuits. While

not amenable to autonomous circuit simulation, the

method of Rizzoli et al. uses a finite output power at the

fundamental as an optimization criterion to avoidl the

degenerate !solution.

Many workers have implemented noniterative nonline-

ar analyses of free-running oscillators using describing

function techniques [15], [16] (commonly used in nclnlin-
ear control system analysis) and functional expansions

1A nonautonomous circuit is one in which the frequencies of signals
are determined by signal sources. For example, an amplifier is a rlonau-

tonomous circuit.
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(generally based on Volterra series techniques [17] -[19],

but also using specialized functional expansions [20]). In

these techniques, the system equations and oscillation

criteria are combined to yield a set of algebraic equations

which can be solved recursively. However, these methods

are restricted to weakly nonlinear oscillators. Cheng and

Everard [21] used a spectral balance approach to analyze

a microwave FET oscillator. They used a Volterra series

technique to generate the harmonic components, but since

they used power series expansions of the nonlinear ele-

ment characteristics, their technique is not restricted to

weakly nonlinear oscillators. In their method they con-

verted an oscillator into a one-port network by making a

break somewhere in the circuit. This leads to the oscilla-

tion criterion whereby the impedance looking into this

port is zero at the fundamental and at all harmonics. A

relaxation algorithm is used to solve for this condition.

The relaxation algorithm, however, has poor convergence

properties and the use of Volterra-series-based nonlinear

analysis is restrictive (limiting the analysis to one-dimen-

sional nonlinearities and, unless power-series-like descrip-

tions are available, to weakly nonlinear oscillators). This

strategy of converting an oscillator into a one-port net-

work also appears to have been implemented in a com-

mercial nonlinear free-running oscillator simulator [22].

All of the above techniques assume that a periodic

steady-state solution of the system equations exists and

then proceed to derive it. In contrast, large-signal oscilla-

tor analysis in the time domain using programs such as

SPICE [23] allows the buildup of oscillations to be ob-

served [24]. In spite of the time required and the difficulty

of determining the time at which steady state is obtained,

time-domain simulation techniques have the ability to

predict the start-up of oscillation in addition to the fre-

quency of oscillation and non-steady-state behavior (e.g.

chaotic behavior). It is also easier to incorporate physical

device models (e.g. those described by coupled partial

differential equations or electron statistics) in time-

domain simulations [25] -[27].

The purpose of this paper is to present a newly devel-

oped free-running steady-state oscillator analysis algo-

rithm suited to large-signal oscillator analysis. Either

fourier-transform-based harmonic balance techniques or

frequency-domain spectral balance techniques can be used

for the nonlinear analyses, and strong nonlinearities are
allowed. In the algorithm, the oscillating frequency is

used as an independent variable and the system error

function is modified to partially incorporate the Kurokawa

oscillation criterion. The major contribution of the work

reported here is formulating the problem so that the

resulting set of equations can be solved using the Newton

method to speed convergence, The method also has good

convergence properties so that the initial setting of the

frequency variable need not be very close to the actual

oscillating frequency. In Section II, we first briefly de-

scribe the Kurokawa condition for steady-state oscillation

since it is the theoretical base of the analysis algorithm.

Then, in Sections II and III, the algorithm is developed
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Fig. 1. One-port equivalent circuit of an oscillator circuit,

and discussed. The algorithm developed here was imple-

mented in the general-purpose simulator FREDA2 and

was applied to the simulation of a varactor-tuned

MESFET oscillator from Texas Instruments (part TI

EG8132). In Sections IV and V, the design and character-

ization of the TI EG8132 are described and in Section VI,

the simulated results and a discussion are presented.

II. SYSTEM EQUATIONS

The steady-state response of nonlinear microwave cir-

cuits is generally obtained using a Newton iteration

scheme to solve a set of system equations expressed in the

frequency domain. In [28], a set of nonlinear system

equations for nonautonomous circuit analysis was devel-

oped, by applying Kirchhoff’s laws, as

M(x)x=y (1)

where the x-dependent circuit matrix M(x) is a modified

nodal admittance matrk, vector y represents the inde-

pendent source vector; and x is the independent variable

vector, which contains all the necessary node voltages and

edge currents at various frequencies. Equation (1) is con-

siderably reduced in size by partitioning the nonlinear

system into linear and nonlinear subcircuits and using

matrix reduction techniques on the linear subcircuit so

that only the voltages and currents at the nodes common

to the nonlinear subcircuit need be considered. While

solution of (1) yields the steady-state response of nonau-

tonomous circuits, this is not sufficient to determine the

response of autonomous circuits, since generally the de-

generate solution (i.e., with all ac voltages and ac currents
zero) is preferred. Our approach is to expand the set of

equations to partially include the Kurokawa oscillation

condition [11], thereby ensuring that the degenerate solu-

tion is not obtained.

A free-running oscillator circuit can be treated as a

one-port network by looking into the terminals of a load

element ‘load, as shown in Fig. 1. Then the s@@-state

oscillation condition [11] (known as the Kurokawa condi-

tion) for a single frequency of oscillation can be expressed

as

Y((i)) =Yo,c((o) + Yload(co) = o (2)

where Y(o) is the input admittance of the one-port net-
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work, and YO,C(OJ)and YkO,d(0) are the equivalent admit-

tances of the “oscillator circuit” and the load element

respectively. Kurokawa derived (2) with a single frequency

only. However, in general, harmonics of the voltages and

currents will be present, and (2) also applies to each

frequency component. Therefore, if K different ac fre-

quency components are present, the condition for the

oscillation of the circuit in Fig. 1 is [14].

Y~ = Yo,c,k +Ylo.d,~=Re{Y~} +jIm{Y~} =0,

k=l,2,..., K. (3)

In (3), the subscript k indicates that the admittance Y~ is

evaluated at the radian frequency Ok, That is, if i and u

in fig. 1 are represented as summations of different fre-

quency components i~ and v~, respectively, in the fre-

quency domain:

i(t) = ~ i~(t) = f l~~lcos(~~f++~) (4)
k=O k=O

and

K

u(t) = f Uk(t) = ~ Ivklcos(okt+ek) (5)
k=O k=O

then the input admittance Y~ evaluated at the radian

frequency ti~ is

Yk=; .
k

(6)

For a one-port nonlinear system, such as a single-diode

circuit, the solution of the multifrequency Kurokawa con-

dition (3) is also a solution of the system equation (l), but

the degenerate solution of (1) is avoided. Solution of (3)

has been the approach generally used in the analysis of

single-diode oscillators [10]–[13]. This method could be

extended to arbitra~ nonlinear circuits by applying (3) at

every node in the circuit and for every frequency compo-

nent. This prevents the voltage and current components

at every ok from being zero, which may not be justified.

Alternatively, (1) can be solved simultaneously with a

partial Kurokawa condition to avoid the degenerate solu-

tion at the fundamental oscillation frequency only. That

is, (1) can be solved in conjunction with

Y1 = Yo,c,~+ Y,oad,l = Re{Yl}+j Im{Yl}=O. (7)

By separating the real and imaginary parts of Yl, (7) can

be written as

Re{Yl}=Re{ll\Vl}=O (8)

and

Im{Yl}=Im{ll\Vl}=O (9)

which imply that

Re{Il} =Im{ll} =0 (lo)

and

Ivll # o. (11)

As an additional variable, ~1, needs to be added for

oscillator analysis, and since Re {Yl} may be frequency

independent, simultaneous solution of (9) with (1) is re-

quired to obtain a matrix equation that is well condi-

tioned with respect to $1. If the augmented set of equa-

tions is limited to this, the degenerate solution will still be

preferred if Im {Yl} is not dependent on VI. Generally

Re {Yl} is tlhen strongly dependent on VI so that the

degenerate solution is avoided by also incorporating (8) in

the augmented set of equations. Note that stable oscilla-

tions are obtained when the amplitude increases suffi-

ciently to vary the driving point admittance of the nonlin-

ear element so that YI = O. Solution of the augmented set

of equations is discussed in Section 111.

III. SYSTEM ERROR MINIMIZATION ALGORITHM

The most efficient way to solve the augmented system

equations is to cast the problem into the minimization of

an objective function:

f(x) =l’f(x)x- y (12)

and use Newton’s method to iteratively obtain the zero of

this function. The iterative process of Newton’s method

applied to (12) is represented as

j+lx ==Jx – J-l(jx)j(jx) (13)

where ‘x is the independent variable vector at the jth

iteration, J is the Jacobian matrix of $, and J– 1 is its

inverse. For nonautonomous circuit analysis, vector x is

composed of the node voltages and edge currents, and is

structured as

[ 1X= ~;x;...xx.T.x;T (14)

where x~ is a subvector of x at the particular radian

frequency co~. Similarly, vector $(ix) is composed of the

elements of the difference vector between the indepen-

dent source vector y and the induced source vector .y(jx)

= M(jx)jx, and has the same structure as x in (14):

f(’x) = [$F(’X) f:(’x) “ “ “f:(jx) “ “ “f;(jx)]T.

(15)

If P + 1 node voltages and Q + 1 edge currents are se-

lected as independent variables and, for efficient calcula-

tion, complex elements in x and $(1x) are separated, into

real and imaginary parts, the structures of the subvector

xk and ~k(j.~) for k + O are

‘k= [v~,k,r ‘0,/c,, ‘I,k,r V,,k,t “ “ “ ‘P,k,r ‘P,k,t

Z ZO,k,z“ “ “ ZQ,k,T IQ,k,iO,k, r
]T (16)

and

J-k(’x) = [Jo,k, r(J~) Jo, k,i(’x) Jl,k,r(’x)

‘I,k,i(jx) “ “ “ ‘P,k,r(jx) ‘P,k,,(’x)

‘O,k,r(’x) ‘O,k,i(’x) “ “ “ E~,k,r(’x)

‘Q,k,iJx)]T (17)
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respectively, where the variable voltage (or current)

phasor at node n and radian frequenCy tik is Vn,k =
vn,k, r + j~t, k,t (or In, ~ = In, k,, + j~n,k,l); the source Cur-

rent (or voltage) phasor J., ~ (or E., k) is similarly defined.

For oscillator circuit analysis, the structure of xl has to

be changed, as the fundamental frequency, ~1, is an

additional variable. Here the imaginary part of the funda-

mental voltage at node N (shown in Fig. 1) in (16) is

replaced by ~1 (and so the phases of node voltages are

referred to the phase of the edge voltage of the load

element). Placing the node voltage of the load element in

the first position of (16), the subvector xl in (14) for

oscillator analysis is constructed as

xl= [Vo,l, r f, v,,,,, Vl,l,i “ “ “ vP,l. r VP,l,,

I 0,1,r I 0,1,t “ “ . IQ, I,, ~Q,l,l]T. (w

Likewise, the subvector jl(’x) in (15) is reorganized by

replacing the element Jo,~,~(jx) in ~l(Jx) (corresponding

to the variable ~1 in xl) with Im {Yl} from (9), and by

replacing the element Jo,~,,(~x) in ~l(~x) (corresponding

to the variable jl in xl) with Re{Yl} from (8):

jl(’x) = [Re{Y1(’x)} Im{Y,(’x)} JI,I,,(JX)

J~,,,i(jx) ~~~Jp,I,r(’x) JP,Li(’x)

Eo,~,r(jx) J%,(JX)

~00EQ,l,r(’x) ~Q,l,i(JX)]T. (19)

A. Formulation of the Jacobian Matrix

The Jacobian matrix J(jx) is composed of (K+ 1) X

(K+ 1) different blocks:

Jo,o(’x) Jo, I(’x) “ “ “ Jo, K(jx) -

J1,o(jx) JI, I(’X) “ “ “ J1, K(’x)
J(jx) = . . .

. . .

_JK,o(’x) JK, I(’x) “ “ “ JK,K(’x)

. (20)

Each block matrix Jq, ~(jx) represents the block Jacobian
matrix for input frequency ~~ and output frequency og,

and its elements are all possible derivatives of the func-

tions in ~$~x) with respect to the variables in xk. Except
for q = 1 or k = 1, the structure of Jq, k is the same as that

for nonautonomous circuit analysis [28]. The only differ-

ence is that some elements of Jq, ~ for q = 1 or k = 1 are

replaced by derivatives of voltages and currents with

respect to fl, by derivatives of Re {Yl}, or by derivatives of
Im {Yl}. In the following, equations for calculating the f ~,

Re {Yl}, or Im{Yl} related derivatives are presented.

Let J.,k,.(’x) represent elements of jl’x) at node n
and radian frequency @k, where s = J’ or i indicates the

real or the imaginary part respectively. With the circuit

separated into linear and nonlinear subcircuits, Jn,k,$7X)

can be expressed as

~n,~,.(j~)= ‘L@,k,s)(’x) + ‘AU,n,k,s)( ’x) (21)

where JL(., ~,$)(jx) and J~ ~(n,k,,)(Jx) are the induced cur-
rents flowing into linear and nonlinear subcircuits from

node n, respectively.

For the linear subcircuit, the derivatives ~~~(., k.S)(]X)\

t)fl are calculated numerically using the secant method

[29]. The linear portion of the system equation (1) can be

extracted to calculate the linear current J~L., k,~,(’x) at

(ok :

‘iD(k, k)xk = h.(k~( ‘x)> k=l,2, ””” , K (22)

where ikf~D~k,k) is the linear Part of the diagonal block

matrix A4k,k(~x) of the modified nodal admittance matrix

M(jx) at ok and is a function of ~~; frequency .fk is not

included in ‘xk; and JL(n,k,,, (~x) are elements ‘f yL@)(jx).

Indeed M@,k), k = 1, “ “ “ , K, is the entire linear portion

of M(jx), as linear components do not contribute to

frequency conversion represented by ~~,k(]x), q + k. Af-

ter calculating the derivatives dJL(., k, ,)(jx)\df~ (k =

1,”””, K) by applying the secant method to (22), the

derivatives d.l~(., k,,)(Jx)/d f ~ (k = 1,” “ “, K) which are re-

quired in the Jacobian matrix can be obtained as

~JL(Hk,,@)\~fl = k[~JL(n,k,s)(jx)\dfkl . (23)

~L[., k,~J’x)\~fl from the nonlin-The contributions dJ

ear subcircuit are calculated for each element. If the

nonlinear element is a resistor, voltage-to-current trans-

ducer, or any other frequency-independent element, any

derivatives with respect to fl for that element should be

zero. However, for a nonlinear capacitor,

AL(n,k,s)(’x)iafl = ‘NL(n,k.s)(’x)/’fl
dJ (24)

and, for a nonlinear inductor,

AW,k,s)(’x)/’’~fl = - ‘NL@,k.siJx)/fl. (25)dJ

In addition to the derivatives dJ:, ~,,( Jx)/df ~, some

Re {Yl} and Im {Yl} related derivatives, such as
a Im {Yl}\dV’Z, k,, or d Im {Y1}/6’f ~, are also required. These

derivatives can be obtained from the previously calculated

derivatives:

( d(l/ vJ
= Re II

‘Vn,k,.

+(l/vi)>
n,k, s )

(26)

{

dIl
= Im II ‘::vl) +(1/vl)~

n,k, s n,k, s 1

(27)

dRe{Y1}/dfl = Re
(%l=Re@&} ’28)
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and

dIm{Yl}/d~l = Im

(%}=lm((l@%} ‘2’)

where V., ~,, is the node voltage defined in (16); II and VI

are complex numbers defined in (4) and (5), respectively;

and

ll(’x) = .lO,lr(’x) + jJo,l,i(’x). (30)

Independent variables in the system equations include

not only the node voltages and the oscillating frequeney

but also the edge currents. Derivatives with respect to the

current variables can be calculated using procedures simi-

lar to those presented in this subsection.

B. Convergence Considerations

In oscillator circuit analyses, the convergence problem

is even more troublesome than in nonautonomous circuit

simulation. One of the reasons is that, in most oscillator

circuits, the active device always operates in a large-signal

condition. In nonautonomous circuit analyses, improved

convergence under large-signal conditions can be achieved

by sweeping the source signal from a low level to the

desired level—the so-called continuation method. How-

ever, in oscillator circuit analysis the large-signal oscilla-

tion condition needs to be simulated directly. Further-

more, microwave circuits are generally designed with

high-Q resonant tank circuits so that near the oscillation

frequency the system error (e.g. the Kirchhoff’s current

law error) can be very large. In the following, two special

techniques, initial frequency setting and fundamental fre-

~uency searching, that improve the convergence proper-

ties of oscillator circuit simulation are presented.

1) Initial Frequency $etting: The initial values chosen

for the independent variables xl in (18) strongly affect

convergence properties. Generally speaking, all the node

voltages and edge currents in xl can be randomly initial-

ized within a certain range which can reflect the practical

oscillator output power level (typically, 0–20 dBm), and

the oscillating frequency fl should not be initialized too

far from the actual value. Our experience has shown that,

for an oscillator circuit having the fundamental frequency

~O,C,if f, is initialized between 0.1 ~O~cand 10 ~O~C,there

N a good chance of converging to a solution.

It is recommended that several different initial fl val-

ues be tried until a solution is acquired, since there are so

many factors (e.g. both 11 and V1 in (9) converging to IOW

levels) which will cause convergence failure. In the mini-

mization algorithm used here, after an estimated funda-
mental oscillating frequency range is given (such as from

flow to fhigh in Fig. 2), the estimated frequency range is
divided into 30 segments equally spaced logarithmically.

In the circuit analysis, the first initial value of f ~ is set to

be the center point, fa, in Fig. 2. If convergence fails, for

whatever reason, the simulation will automatically restart

by resetting the initial value of fl to fb, Then, the next

*.

flow ““” f. f= f. fb fd .-. fhigh

Fig. 2. The sequence of the initial fundamental frequency settings.

one is set to fc. This process continues until convergence

is obtained or the initial frequency has shifted to the ends

of the frequency range.

It should be noted that the estimated frequency range

(from flow to f~l~h in Fig. 2) is for initializing fl only.

Once an initial value of f ~ is set and the Newton iterative
procedure is in process, the required updated value of ~1

is not restricted to this range. Also, the initial value of fl

need not be very close to the actual oscillating frequency.

Starting with an initial guess of 5 GHz and converging to

an actual operating frequency of 10 GHz is a common

situation. Hc}wever, choosing fl closer to the actual oscil-

lation frequency has little effect on simulation time.

2) Fundamental Frequency Searching: Since most c}scil-

lator circuits operate under large-signal conditions and

the active device is generally strongly nonlinear, the error

surface for the oscillator analysis formulated in the vector

f is much more complicated than that for nonau-

tonomous circuit analyses. Therefore, another way of

improving th~e convergence ability is to first decrease the

number of harmonics so as to simplify the error surface

and then restore it to the desired value gradually. In our

implementation of oscillator analysis, we first consider the

fundamental frequency and, when convergence has been

obtained, repeat the analysis with the second-hagmonic

signal present. After repeating this process and obtain-

ing the convergence with the third-harmonic signal pres-

ent, the number of harmonics is then increased to the

maximum number specified by the user. Note that if a

Fotirier-transform-based harmonic balance method is

used, it is important to use oversampling to avoid aliasing

[30] when a small number of frequency components are

used.

IV. OSCILLATOR DESIGN

A Ku-band GaAs MMIC dual-varactor tuned FEr os-

cillator was experimentally characterized and used to

provide experimental verification of the oscillator nonlin-

ear analysis ~echnique. The design of the oscillator is

described in [31], and the layout and schematics are

shown in Figs. 3 and 4. The bias networks were designed

to present broad-band open circuits to” the FET so that

the bias voltages were applied directly to the FET. The

drain matching network was designed to transform the 50

0 characteristic impedance of the output microstrip line

so that a constant 15 Q was presented to the drain of the
MESFET. IBroad-band coverage was obtained by first

sweeping the reverse bias voltage on the varactor diode in

the source leg and then sweeping the reverse bias voltage

on the varactor diode in the gate leg. Thus, first decreas-

ing impedances were presented to the source of the FET

and then decreasing impedances were presented to the

gate. The linear circuitry was designed so that optimum
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Fig. 3. Device layout of the TI EG8132 GaAs varactor-tuned FET
oscillator.
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TABLE I

PARAMETER VALUES OF THE GATE AND SOURCE VARACTOR MODELS
IN THE TI EG8132 OSCILLATOR

Gate Varactor

b – 8.0 V

aO –o.54xlo-1~
az 2.3x10-Y

a3 –8.7938 X 10-3

a4 1.4 X1 O-6

U5 –1.0458x 10-5

afi 3.048 x10-5

1,5

1.0

C
a

c1

0.5(

e’”” e’”’”
Fig. 4. Schematic of the TI EG8132 GaAs varactor-tuned FET oscilla-

tor. The ribbon and wire elements were modeled by a resistor and

inductor in series. The trims element is a microstrip transmission line.

source and gate impedances were presented at the low

end of the tuning range and also at the high end. A

unique varactor structure, detailed in [31], was realized to

maintain high Q of the varactor diodes at large reverse

biases. This avoided a frequency hole initially observed at

intermediate tuning voltages using a conventional varac-

tor structure. Assuming that the bias networks are ideal,

the oscillator is modeled by about 35 linear elements in

addition to the active devices. Including the bias net-

works, the oscillator is modeled by about 100 linear

elements.

Source Varactor

– 6.0 v

–o.09xlo-1~
4.783 X 10-10

–1.4703X1O-8
1.8351 x10-7

–1.O475X1O-6
2.3177x 10-6

$RL

0.0

I I I I I I

–n

—
.&A-Az & —

Source

I I I I I I

0.0 2.0 4.0 6,0 8.0 10. 12. 14,

REVERSE BIAS (V)

Fig, 5. The calculated equwalent capacitances (curves) from the mod-
els and the measured data (points) for both gate and source varactors of
the TI EG8132 oscillator.

Fig. 6. Equivalent circuit of the MESFET of the TI EG8132 oscillator.



CHANG etal.:ANALYSIS OF FREE-RUNNING MICROWAVE OSCILLATORS 1’741

TABLE H
PARAMETER VALUES OF THE MESFET MODEL IN THE TI EG~132 OSCILLATOR

Parameter Value

A.

Al

A2
A3

;
v:

;0

;R

0.0698

0.0291

–0.00183
–0.00132

1.632
0.0684

3.0 v
6.OX 10-12

1.0x 10-9A
7.0
20 v

60.
a-
&

~ 40.

20.

0.0
0.0 1.00 2.00 3.00 4.00 500

V(j, (V)

Fig. 7. The calculated id, (curves) from the MESFET model as a
function of Ud. at ug~ = –3, –2.5, –2, – 1.5, – 1, –0.5, O, and 0.5 V.
Points are the measured data.

V. ACTIVE DEVICE CHARACTERIZATION

Each varactor diode was modeled as series-connected

resistor and nonlinear capacitor. The capacitances, the

major frequency tuning factors, were modeled to fit the

measured data using a negative-ordered power series:

C=aO+az(V–~)-2

+a3(V–~) -3+ . . . +a6(V– E7)-’. (31)

. Here V is the applied reverse ,~ias voltage, and a and b
--

are constants. This equation was fitted to measurements

using a least-squares technique yielding the parameter

values listed in Table I. The capacitances calculated using
.’ the model are compared with the measured data in Fig. 5.

The MESFET was modeled using the equivalent circuit

shown in Fig. 6, which is similar to the one used in the

Curtice model [32]. The only difference is that the ele-

ment R ~J, which is an individual element in the Curtice

model, is merged with the drain,vsource current genera-
tor, id,. The nonlinear elements of the model are defined

as

i~, = ~o(e%w,) – 1) (32)

i~~ = 10(ec”~~-~RJ/~~ + 1) (33)

and

i., = (AO + AIL,,+ A,u~ + A,u~)tanh(yu,~), (34)

where

u,= Ug$(t - 7)[1+ f?(v~ - udJ]. (35)

Table II lists all the parameter values of (32)-(35). The

calculated i~~ curves using model (34) and (35) are com-

pared with thle measured data in Fig. 7. A simplified

circuit diagram is shown in Fig. 4.

VI. SIMULATION RESULTS AND DISCUSSION

The oscillator analysis algorithm was implemented in

the microwave analog circuit simulator FREDA2 P8],

[30], [33]. Linear elements are analyzed using the moldi-

fied nodal admittance matrix, and the nonlinear elements

are analyzed using the arithmetic operator method

(AOM)—a frequency-domain spectral balance method
[33] or the discrete-Fourier-transform-based harmonic

balance method similar to that described in [34]. This

program was used to investigate the TI EG8132 VCO

from Texas Instruments. This VCO was previously ana-

lyzed using the method of Rizzoli et al. [35], [36].

In the first :simulation to be presented, the gate, source,

and drain bias networks were treated as ideal—present-

ing open circuits to the MESFET at all frequencies but

dc, when the external bias voltages were applied directly

to the MESFET. The dashed curve in Fig. 8 shows the

simulated fundamental oscillation frequency with respect

to the total tuning voltage, VT (the sum of the gate and

source tuning voltages), applied to the gate and soumce

varactor diodes. The points are measured data and the
solid line is tlhe result using the complete circuit (includ-

ing the actual bias networks). During the simulation, the

tuning voltage is applied to the source varactor first. After

the reverse bias of the source varactor has changed from

1 V to 13 V, the reverse bias of the gate varactor in-

creases from O V to 15 V. The predicted frequency curve

without the bias networks is closer to the measured data,
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Fig. 8. The simulated fundamental oscillation frequency versus the

total tuning voltage, VT. Solid line is for the complete oscillator circuit:

dashed line is for the core circuit; and points are measured data.

15,

g 5,0
~

u

g -5.0

(1

i-
<-15.
t-

2

-25

-35
0.0 40 80 12, 16. 20, 24. 28.

TUNING VOLTAGE (V)

Fig. 9. The simulated output power at the fundamental frequency

(u) and at the second (b). third (c), and fourth (d) harmonics. Solid
lines are for the complete oscillator circuit, dashed lines are for the

circuit w]th Ideal b]as networks. and points are measured data.

However, both results deviate less than 500 MHz ( < 3%)

from the measured data.

Fig. 9 shows the simulated output power delivered to

the 50 ~ microstrip output line at the fundamental and at

the second, third, and fourth harmonic frequencies. As

before, solid lines and dashed lines are for the complete

circuit and the circuit with ideal bias networks, respec-

tively. The points are measured output power at the

fundamental frequency. The results obtained using the

Fourier-transform-based harmonic balance method in the

nonlinear analysis were virtually identical to those ob-

tained using the frequency-domain spectral balance

method. From Fig. 9, the oscillation tuning range can be

accurately predicted. Although, because of the modeling

inaccuracy, some differences have been shown in both

Figs. 8 and 9 between the predicted values and the

measured data, in general good agreement is seen. Most

of the discrepancy is due to modeling inaccuracy, particu-

larly the modeling of the MESFET at the waveform

extremities —(low Id,, high Vd$) and (high ~d~, low

I&)-and the modeling of bond wires and ribbons.

Simulated results in Figs. 8 and 9 were performed by

sweeping the reverse biases of the source and gate varac-

tors, in turn, in 0.5 V steps beginning with a 13 V tuning

voltage—the middle of the range of oscillation. While

sweeping the parameter values during the simulation, the

previous results were used as the initial guesses for the

next simulation. Convergence, in this case, was easily

obtained. However, for the first simulation, the initial

frequency guessed was arbitrary. Several different initial

frequency settings were needed to obtain convergence.

On average, with seven ac frequencies considered and

using the AOM for the nonlinear analysis, the computer

CPU time required to simulate the VCO with ideal bias

networks was about 105 s per point in Figs. 8 and 9, and

the CPU time required for the simulation of the complete

circuit was about 17 min per point. The times were

measured on a DEC DS31OO RISC workstation (rated at

12-13 VAX 11/780 MIPS) and the convergence criteria

were 100 nA total Kirchhoff’s current law error and

Re {Yl}, Im {Yl} <100 nS. Seven harmonics were included

in the simulation, with the seventh harmonic approxi-

mately 40 dB below the fundamental. For the complete

circuit simulation, most of the CPU time is consumed in

the computations for the linear elements, since the nodal

admittance matrix for the linear elements has to be recal-

culated after each iteration as the frequency is updated.

The oscillation tuning range is accurately predicted as

shown in Fig. 9. The rapid drop-off in power at the

extremes of VT is principally due to drops in the Q’s of

the varactor diodes. The power peaking at low and high

VT is primarily due to the variations of the source and

gate varactor impedances since at low VT the source

varactor impedance is optimum for maximum power

transfer to the load. Similarly the gate varactor impedance

is optimum at large VT. The power peaking was investi-
gated by plotting the drain–source i – u characteristics at

various tuning voltages. Three characteristics are shown

in Figs. 10– 12 at VT’S of 3 V, 10 V, and 21 V, correspond-

ing to the power peak at low VT, the low-power flat

region at intermediate VT, and the power peak at large

VT, respectively. At VT= 3 V the reverse bias voltages

across the source and gate varactors are 3 V and O V,

respectively, and the fundamentals of the drain–source

current and voltage are approximately in phase, as indi-

cated by the closed i – L’ locus in Fig. 10. Thus there is

close to maximum power transfer to the load. Also the

origins of the strong harmonics at low VT can be seen in

the low Id, and high Vd, regions. At VT = 10 V the source
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Fig. 10. The simulated id, versus Ud, locus at VT= 3 V, where the
reverse voltages across the gate and source varactors are O V and 3 V,
respectively,
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Fig. 11. The simulated id, versus Ud, locus at VT= 10 V, where the
reverse voltages across the gate and source varactors are O V and 10 V,

respectively.

and gate varactors have 10 V and O V reverse bias
. voltages. The source impedance has changed significantly

while the gate impedance is virtually unchanged. The

fundamental drain–source current and voltage are no

longer in phase, as indicated by the opening of the i-u
locus in Fig, 11, In this case power is not efficiently

transferred to the load. With 13 V and 8 V reverse biases

across the source and gate varactors, respectively, (i.e., at

VT= 21 V), nearly optimum impedances are again pre-

sented to the gate and source terminals of the MESFET.

Now the fundamental Id, and Vd~ are almost in phase, as

can be seen in Fig. 12. The discrepancy in the simulated

40.

20.

0.0

t -1

0.0 2,00 4.00 6.00 8.00 10.0

Vd, (V)

Fig. 12. The simulated id, versus Lid, locus at VT= 21 V, where the

reverse voltages across the gate and source varactors are 8 V and 13 V,
respectively.

and measured peak oscillation powers k thought to be

due to inadequacies in modeling the MESFET in the low

Id, /high Pj$ and the low V’DS /high lD~ regions, and in

modeling the Q‘s of the varactor diodes.

VII. CONCLUSION

This paper has presented a simulation technique for

steady-state free-running oscillator analysis. The theoreti-

cal basis of the algorithm was described, and it was

implemented using the Fourier-transform-based harmonic

balance methc)d and the frequency-domain spectral bal-

ance arithmetic operator method for nonlinear analysis.

The oscillator analysis technique was used to simulate the

output power and oscillation frequency of a GaAs MIvflC

varactor-tuned FET oscillator. Good agreement between

simulated and measured oscillator characteristics was ob-

tained.
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